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This paper is concerned with the active isolation of a system containing a distributed

parameter isolator using absolute velocity feedback control. The main differences

between this type of system and one with a massless isolator, is that there are isolator

resonances. It is shown that the vibration at these resonance frequencies cannot be

the isolator resonances can cause the control system to become unstable, if the isolated

equipment is supported on a flexible base. A stability criterion based on the mode

shapes of the system is presented. Two techniques to stabilise the system are

investigated and compared. The first involves the addition of mass on the base

structure, and the second involves an electronic lead compensator. Experimental results

are presented to support the theoretical findings. It is shown that even if the instability

due to the isolator resonances and flexibility of the base can be prevented, the

instability due to the flexibility of the equipment remains a problem.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Among the various issues associated with vibration, the isolation of a delicate item of equipment from a vibrating host
structure is a common situation [1–3]. Traditionally, passive vibration isolation, consisting of vibration isolators made of
compliant materials, is often used to provide dynamic decoupling between the delicate equipment and the host structure
[2]. Base vibration typically has an unpredictable waveform and the vibration isolator has to deal with broadband
excitation spectra [4]. Conventional passive vibration isolation systems suffer from an inherent trade-off in the choice of
damping for high frequency isolation, which requires a low level of damping, and isolation at the fundamental mounted
resonance frequency, which requires a high level of damping [4,5]. This inherent compromise can be overcome by
incorporating an active vibration isolation system in parallel with a passive isolator [4,6–8].

In active vibration isolation, the output of the system can be fed back into the controller directly to generate the control
signal, which is simple and straightforward to implement. A common approach is to use absolute velocity feedback (AVF)
control [9–11]. One of the advantages of this approach is that the control system is unconditionally stable for collocated
ideal force actuators and sensors, irrespective of structural modelling errors [9,12]. Furthermore, AVF control is the optimal
solution to minimise the mean square velocity of the equipment [8]. For a base-excited system, the action of AVF control is
equivalent to a skyhook damper [6]; the response at the resonance frequency is attenuated without compromising high
frequency performance. If the base is rigid, the control system is unconditionally stable [13].
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The traditional active vibration isolation model, in which the mass of the isolator is ignored, offers a good prediction
tool and provides design guidelines at relatively low frequencies. However, at higher frequencies, the predictions based on
the massless isolator model may be wrong and misleading. The distributed mass, stiffness and damping in the isolator
introduce isolator resonances (IRs), or wave effects, in the isolator [14–16]. The degradation in passive performance of the
vibration isolator due to the isolator resonances is especially important for lightly damped metallic isolators, since the
smaller the damping in the isolator the more significant are the resonances caused by the wave effects [17].

The aim of this paper is to investigate the effects of resonances in a distributed parameter isolator on the control
performance and stability of an active vibration isolation system under AVF control. A base-excited SDOF system with a
distributed parameter isolator, which is modelled as a finite elastic rod, is first analysed under AVF control. This analysis is
then extended to include the resonance behaviour of the supporting structure. The control performance and stability of
such systems are discussed. Experimental work on a four-spring active vibration isolation system is then presented to
support and validate the theoretical results before the overall conclusions are drawn.
2. Active vibration isolation of the system under base-excitation

The base-excited active vibration isolation system considered in this section is shown in Fig. 1a. It consists of an item of
equipment represented by its impedance Ze supported by a distributed parameter isolator under AVF control. The isolator
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Fig. 1. Active isolation of a base-excited system, in which the isolator is a distributed parameter system: (a) schematic diagram, (b) free-body diagram,

and (c) passive analogue of the active control system.
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is modelled as an elastic rod, and connects to the equipment at a single point. Its impedance matrix is given by [17]

ZL ¼
Z11 Z12

Z21 Z22

" #
¼

S
ffiffiffiffiffiffiffiffi
E�r

p
j sinðk�l LÞ

cosðk�l LÞ �1

�1 cosðk�l LÞ

" #
(1)

where L, S, E* and r are the length, cross-sectional area, Young’s modulus and density of the isolator, respectively.
To account for damping in the isolator, Young’s modulus is assumed to be complex, i.e. E� ¼ Eð1þ jZiÞ, where Zi is the loss
factor of the isolator. The complex longitudinal wavenumber k�l , is given by k�l � klð1� jZi=2Þ, where kl ¼

ffiffiffiffiffiffiffiffiffi
r=E

p
o, and o is

angular frequency. The active control force, fa, acts in parallel with the isolator between the equipment and the base. The
control force is proportional to, and in phase with, the velocity of the equipment, and the feedback controller has a
constant gain �h. Thus

fa ¼ � h _ue (2)

The free-body diagram of the active isolation system is shown in Fig. 1b, and the system of equations describing the
system is

Ze _ue ¼ faþ fe (3a)

f1

f2

" #
¼ ZL

_ub

_ue

" #
(3b)

Eqs. (2) and (3) can be combined to give the transmissibility of the system, which is given by

T ¼
_ue

_ub
¼

�Z21

ZeþZ22þh
(4)

If the equipment is modelled as a mass, i.e. Ze ¼ jome, and the elements of impedance matrix given in Eq. (1) substituted
into Eq. (4), the transmissibility can be written in non-dimensional form as

T ¼
1

cos
ffiffiffiffiffimi
p

1� j
Zi

2

� �
O

h i
�
O� j2zaffiffiffiffiffimi
p 1� j

Zi

2

� �
sin

ffiffiffiffiffimi
p

1� j
Zi

2

� �
O

h i (5)

where O¼o=oe is the ratio of the excitation frequency o, to the system fundamental natural frequency oe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KL=me

p
(note that the mass of the isolator is neglected in the definition of OMEGA), due to the interaction of the equipment mass
and the static stiffness, KL ¼ ES=L, of the isolator; mi ¼ rSL=me is the ratio of the mass of the isolator to the mass of the
equipment and za ¼ h=2

ffiffiffiffiffiffiffiffiffiffiffi
KLme

p
is the active damping ratio due to AVF control.

Examining Eq. (5) it can be seen that the effect of AVF control is to add a damping term to the denominator, leaving the
numerator unchanged. The action of AVF control in this case is therefore the same as a skyhook damper. Note that the
equivalent viscous damper acting between the equipment and the inertial ground has a damping coefficient h.
The transmissibility is plotted in Fig. 2 for various active damping ratios, and for mi ¼ 0:1 and Zi ¼ 0:01. Also plotted is the
transmissibility of a system with a massless isolator. It can be seen that the fundamental peak in the transmissibility for
the distributed parameter isolator occurs at a frequency close to that of the resonance frequency of the system with a
0.1 1 10 100
-80

-60

-40

-20

0

20

40

Frequency ratio � 

|T
ra

ns
m

is
si

bi
lit

y|
 (

dB
) 

Increasing �a

Isolator resonances

Fig. 2. Transmissibility of the base-excited active vibration isolation system under AVF control. Mass ratio, mi ¼ 0:1, isolator loss factor, Zi ¼ 0:01.

The active damping ratios za ¼ 0, solid bold line; za ¼ 0:2, dashed line; and za ¼ 1, dotted line. The thick and thin dashed-dotted lines pass through the

isolator resonance peaks and the troughs of the transmissibility respectively. The faint solid line is the transmissibility for the system with a massless

isolator, which has no isolator resonances.
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massless isolator. However, at high frequencies ðOb1Þ, the transmissibility for the system with the distributed parameter
isolator, is greater than that for the massless isolator, due to the isolator resonances. It can also be seen that the
fundamental resonance peak is attenuated when the active damping ratio is increased, but there is little reduction of the
peaks of the isolator resonances. Two other lines are also plotted: one which passes through the isolator resonance peaks
and one which passes through the troughs. Approximate expressions for these lines are determined below.

To determine the line which passes through the peaks, it is first noted that these peaks occur approximately at a natural
frequency of the isolator when sinð

ffiffiffiffiffimi
p OÞ ¼ 0. By making small angle approximations, but assuming that Obza, i.e.,

relatively high frequencies, then the line that passes through the peaks is given by

jTjpeak �
2

Zi

1

O2
(6)

This demonstrates that AVF control cannot attenuate the peaks of the isolator resonances in the distributed parameter
isolator at high frequencies.

To determine the line through the troughs it is noted that a trough occurs approximately when sinð
ffiffiffiffiffimi
p OÞ ¼ 1 and when

cosð
ffiffiffiffiffimi
p OÞ ¼ 0. Again, using small angle approximations and assuming Obza, i.e., relatively high frequencies, the line that

passes through the troughs is determined to be

jTjtrough �
ffiffiffiffiffimi

p 1

O
(7)

which shows that AVF control cannot influence the line though the troughs either. A more general and physical argument
to show why AVF control cannot change the transmissibility of the system at high frequencies, can be presented by
considering the relative size of the impedances of the system components in Eq. (4). As mentioned previously, the active
control system effectively acts as a sky-hook damper with damping coefficient h. This damper acts in parallel with the
point impedance of the isolator Z22 and the equipment impedance Ze as can be seen by the denominator of Eq. (4),
Ze+Z22+h. At relatively high frequencies, if the equipment has a mass-like impedance, i.e. Ze ¼ jome which increases with
frequency, then this impedance is likely to be much higher than the control gain h. It will thus control the response,
rendering AVF control ineffective.

Because the controller has a constant feedback gain, the stability of the AVF control system can be determined by
examining the plant response rather than the open-loop response function of the system. By combining Eqs. (3a,b), the
plant response is given by

G¼
_ue

fa _u b ¼ 0

¼
1

ZeþZ22

���� (8)

It is noted that Ze and Z22 are both point impedances, so their phase is between �901 and 901. Therefore the overall phase
shift of the plant response G is between �901 and 901, and is thus completely passive and hence stable. Also, from the point
of view of collocation, because the base motion is prescribed which is not affected by the active control force, the actuator
and the sensor are thus collocated, so that such a system under AVF control is unconditionally stable.

3. Active vibration isolation of the system on a flexible base

In practice, the base structure is not usually rigid as discussed in the previous section. It typically exhibits dynamic
behaviour, and thus the AVF control system is no longer co-located. In this section an investigation is carried out into the
way in which the base dynamics affects the control performance and the system stability. Fig. 3a depicts the system under
consideration. The base structure is excited by a primary force f, and is represented by its input impedance Zb. The isolator
is again modelled as an elastic rod.

Using the free-body diagram in Fig. 3b, the system can be described by Eqs. (3a, b) and

Zb _ub ¼ f � faþ fb (9)

where fb ¼ � f1 is an internal force. The velocity of the equipment is thus given by

_ue ¼ ðYee � YebÞfaþYebf (10)

where Yee is the input mobility of the equipment when coupled to the rest of the system, Yeb is the transfer mobility from
the force, f on the base to the equipment velocity, _ue when the system is connected, and they are, respectively, given by

Yee ¼
ZbþZ11

ðZeþZ22ÞðZbþZ11Þ � Z12Z21
(11a)

Yeb ¼
�Z21

ðZeþZ22ÞðZbþZ11Þ � Z12Z21
(11b)

Substituting Eq. (2) into (10), the velocity of the equipment can be written in terms of the mobilities as

_ue

f
¼

Yeb

1þhðYee � YebÞ
(12)
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Fig. 3. Active isolation of a system on a flexible base, in which the isolator is a distributed parameter system: (a) schematic diagram, and (b) free-body

diagram.
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If the equipment has a mass-like impedance, i.e. Ze ¼ jome and the base structure is modelled as a mass mb on a complex
spring, i.e. K�b ¼ Kbð1þ jZbÞ, where Kb is the stiffness of the base and Zb is the loss factor of the base, the non-dimensional
amplitude ratio of the system under AVF control is given by

ue

dst
¼

1"h
ð1þ jZbÞ� 1þ 1

mb

� �
O2

G2
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� �
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(13)

where dst ¼ f=Kb is the static deflection of the base; G¼ob=oe ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffimkmb
p

is the ratio of the natural frequency of the base
to the natural frequency of the equipment, in which ob ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kb=mb

p
(note that the mass of the isolator is neglected in the

definition of GAMMA); mk ¼ KL=Kb is the ratio of the static stiffness of the isolator to the stiffness of the base; mb ¼mb=me is
the ratio of the mass of the base to the mass of the equipment.

It can be seen in Eq. (13) that, as before, the effect of AVF control is to add a damping term to the denominator and leave
the numerator unchanged. The amplitude ratio for the system on a flexible base under AVF control with different values of
the active damping ratio za, is plotted in Fig. 4. It can be seen that the fundamental resonance peak is attenuated with an
increase in the active damping ratio. The peak that is primarily due to the base dynamics, which is the second peak, is also
reduced for high active damping ratios. However, the peaks of the isolator resonances are largely unaffected by the control
system, especially at high frequencies. The reason is the same as that discussed for the base excited system. However, it
should be noted that some isolator resonance peaks, such as the third peak, are amplified due to AVF control. This
amplification can potentially destabilise the control system at high control gains, and thus the control performance is limited.

The stability of the control system can also be determined by examining the plant response. From Eq. (10), the plant
response is given by

G¼
_ue

fa

�����f ¼ 0

¼ Yee � Yeb (14)

Because Yee is an input mobility, it has a phase shift between �901 and 901. However, Yeb is a transfer mobility so it is a
potential threat to the stability of the AVF control system. Moreover, if the AVF control system is only conditionally stable,
there is at least one loop in the left half in the Nyquist plot of the plant response which crosses the negative real axis. For
the system analysed here, these loops only occur at resonance frequencies. Thus, if the transfer mobility Yeb is greater than
the input mobility Yee at one of the resonance frequencies, the system has the potential to become unstable for high control
gains. Based on this fact a stability condition for the control system can be derived.

For a multi-degree-of freedom system, the mobility is given by [5]

Yts ¼
_ut

fs
¼
X1
j ¼ 1

jo � fðjÞt � f
ðjÞ
s

Kjð1�O2
j þ j2zjOjÞ

(15)
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parameter isolator on a flexible base under AVF control. The active damping ratios are za ¼ 0, solid line; za ¼ 0:2, dashed line; and za ¼ 1, dotted line.

B. Yan et al. / Journal of Sound and Vibration 329 (2010) 1601–16141606
where fðjÞt and fðjÞs is the jth mode shape evaluated at the response point t and excitation point s, respectively; Kj, Mj and zj

are the modal stiffness, modal mass and equivalent modal viscous damping ratio of the jth mode, respectively; Oj ¼o=oj

is the non-dimensional frequency ratio, where oj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kj=Mj

p
. In a lightly damped multi-degree-of-freedom system only one

mode dominates at frequencies close to a natural frequency, and in this case the point and transfer mobilities can be
approximated to

Yee �
½fðjÞe �

2

2
ffiffiffiffiffiffiffiffiffiffi
KjMj

p
zj

; (16a)

Yeb �
ðfðjÞb fðjÞe Þ

2
ffiffiffiffiffiffiffiffiffiffi
KjMj

p
zj

(16b)

where fðjÞe and fðjÞb are the jth mode shape evaluated at the equipment and base respectively. Substituting Eqs. (16a, 16b)
into (14), the plant response at a natural frequency can be written as

Gjo � oj
�

½fðjÞe �
2 1�

fðjÞb

fðjÞe

 !

2
ffiffiffiffiffiffiffiffiffiffi
KjMj

p
zj

(17)

For stability, the following condition is necessary

fðjÞb

fðjÞe

o1 (18)

for all j. If the mode shapes of the system, evaluated at the equipment and base, have the same phase, then the condition
for stability is jfðjÞe j4 jf

ðjÞ
b j. Thus Eq. (18) provides a simple method to determine the stability of the AVF control system in

terms of the mode shapes of the system. This stability condition means that if the displacement of the base is greater than
the displacement of the equipment, and these two displacements are in phase at the jth natural frequency, the AVF control
system may become unstable. This stability condition can also be applied to the AVF control system containing a massless
isolator on a flexible base, which has been previously investigated by Elliott et al. [13].

Figs. 5(a)–(c), depict the plant frequency response (magnitude, phase and zoomed (0–100 Hz) Nyquist plot) for a
conditionally stable AVF control system. It can be seen in Fig. 5(b) that the phase at the first isolator resonance frequency is
o�1801. This phase lag generates a loop in the left half of the complex plane as shown in Fig. 5(c) that crosses the negative
real axis, which causes the system to be potentially unstable for high control gains.

To stabilise the control system, the stability condition given in Eq. (18), shows that the relative displacement between
the equipment and the base at a troublesome resonance frequency needs to be adjusted. In some situations, this can simply
be achieved by adding more damping in the isolator. Additional mass could also be added to the base structure to change
the mode shape [18]. Alternatively, electronic means such as lead compensators can be used to compensate for the phase
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Fig. 5. Plant frequency response: (a) magnitude, (b) phase, and (c) Nyquist plot (0–1000 Hz). mi ¼ 0:1, mb ¼ 0:5, mk ¼ 0:1, Zi ¼ Zb ¼ 0:01.
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lag at troublesome resonance frequency. To guarantee stability, at a resonance frequency it is necessary for

hG¼ h

½fðjÞe �
2 1�

fðjÞb

fðjÞe

 !

2
ffiffiffiffiffiffiffiffiffiffi
KjMj

p
zj

4 � 1 (19)

Hence the maximum control gain is given by

hmax ¼
2

ffiffiffiffiffiffiffiffiffiffi
KjMj

p
zj

½fðjÞe �
2 fðjÞb

fðjÞe

� 1

 ! (20)

4. Experimental investigation

4.1. Experimental setup

To investigate some of the theoretical findings in the previous section an experimental investigation was carried out.
In the theoretical analysis, the distributed parameter isolator was modelled as an elastic rod. In the experimental work,
a helical spring was used. For practical reasons a four-spring active vibration isolation system was designed rather than a
single spring system, and a photograph of this is shown in Fig. 6. It consisted of a symmetrical aluminium plate
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representing the equipment installed on top of another symmetrical aluminium plate representing the base via four
identical helical springs. A large electromagnetic vibrator (Derritron type VP4) beneath the base plate acted as the primary
force actuator, and the four small electromagnetic actuators (LDS V101) fixed on the equipment plate were the control
actuators at each mount position. The equipment structure to be isolated was thus a combination of the aluminium
equipment plate and four actuators. Each helical spring was bolted to the equipment plate through an aluminium washer
beneath each actuator. A stinger was connected through the centre of the spring between each actuator and the
corresponding washer at the foot of each spring. The base plate, to which the washers were attached by bees wax, was
bolted to the primary vibrator with four bolts. The base structure can be modelled as a SDOF system as it is symmetric,
i.e. a flexible base with an effective mass supported by a spring. Therefore, this four-spring active vibration isolation system
can be simulated using the theoretical model described in the previous section. The detailed physical and geometrical
parameters of the experimental setup are listed in Table 1. A schematic diagram of the experimental setup and signal path
with details of one actuator and the corresponding spring is shown in Fig. 7.
4.2. Stability analysis

To measure the open-loop frequency response, the four actuators fixed on top of the equipment plate were driven with
the same white noise from a dynamic signal analyser (Data Physics-Signalcalc Mobilyzer II) through a power amplifier,
while the primary vibrator was connected but inactive. The equipment response was measured using five accelerometers
(B&K type 4375) located along two central lines of the equipment plate, and the signals passed through charge amplifiers
(B&K type 2635) and integrated, so that the vertical equipment velocity response could be measured. The open-loop
frequency response of the AVF control system was thus obtained, but the input voltage to the power amplifier was used as
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Table 1
Physical properties and geometrical data of the four-spring active vibration isolation system.

Equipment structure Material of the equipment plate Aluminum

Dimension of the equipment plate (160�160�10 mm)

Mass of each actuator 0.91 kg

Mass of the equipment structure 5 kg

Spring Mass of each spring 27.1 g

Stiffness of each spring 1:73� 104 N=m

Base structure Material of the base plate Aluminum

Dimension of the base plate (160�160�10 mm)

Effective mass 1.18 kg

Effective stiffness 4:25� 104 N=m
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Fig. 7. Schematic diagram of one corner of the four-spring active vibration isolation system. The acceleration of the equipment and the base are given by
€ue and €ub , respectively.
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the reference signal rather than the input force because the input voltage is approximately proportional to the input force
within the frequency range of interest in this study [19].

The predicted and measured open-loop frequency responses are shown in Fig. 8. The first peak at 11.8 Hz is dominated
by the equipment response, in which the mass of the equipment structure interacts with the serial combination of the four
parallel springs and base stiffness. The second peak, at approximately 50 Hz, is dominated by the base dynamics, in which
the base mass interacts on the parallel combination of the four parallel springs and base stiffness. The first resonance in the
helical springs at about 404 Hz can be clearly identified and compares well with predictions. However, the second isolator
resonance is strongly coupled with some flexural modes in the equipment plate, which can no longer be assumed to be
rigid at these relatively high frequencies. Apart from some differences in the resonant amplitudes, the theoretical results
agree fairly well with the experimental measurements, except for the unmodelled rotational modes around 32 and 289 Hz,
the unmodelled flexural modal behaviour in the equipment plate around 327 Hz and in the frequency range above 500 Hz.
The phase shift at low frequencies, which is 4901, is due to the phase advances in the power amplifier and charge
amplifiers. The phase shift at high frequencies, where the phase tends to decrease below �901, is due to the phase lag in
the low-pass filters incorporated inside the charge amplifiers.

The potential instability occurs at the first resonance of the helical springs as predicted. This supports the stability
analysis in the theoretical study. The flexural mode in the equipment plate at 327 Hz also has the potential to destabilise
the system, which is not considered in the theoretical study here but was identified by Kim et al. [10]. The cause of the
instability in the experiment also includes the phase advances in the power and charge amplifiers. The power amplifier has
a phase advance of up to about 901 at very low frequencies (under 5 Hz). Furthermore, an additional phase advance occurs
in the charge amplifier. A phase advance of 4901 at very low frequencies can cause the Nyquist plot of the plant response
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Fig. 8. Measured, solid line, and predicted, dashed line, open-loop frequency response of the four-spring active vibration isolation system.
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Fig. 9. Measured Nyquist plot of the open-loop frequency response of the four-spring active vibration isolation system.
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to cross the negative real axis, thus making the system unstable to high gain [20]. The experimental plant can also be
potentially unstable at very high frequencies due to the high-order modes in the experimental structure as well as
electrical issues. The low-pass filter incorporated inside the charge amplifier produces an effective time delay in the control
loop, which can make the system unstable at high frequencies. Furthermore, the phase shift in the electromagnetic
actuators can also be modelled as an additional time delay [10].

Fig. 9 depicts the Nyquist plot of the open-loop frequency response corresponding to the frequency range of Fig. 8.
Two loops in the left half of the complex plane crossing the negative real axis are caused by the first resonance in the
helical springs at 404 Hz (smaller loop on left hand side) and the flexural mode in the equipment plate at 327 Hz (larger
loop on left hand side), respectively. The Nyquist plot of the plant response also crosses the negative real axis at very low
frequencies due to the phase advances in the power and charge amplifiers, which is not shown in Fig. 9. In these
experiments, it was this phase shift that caused instability at very low frequencies before the potential instabilities above
became important.
4.3. Control performance

A single-channel AVF control on the four-spring active vibration isolation system was implemented on each of the four
springs. The primary vibrator was driven with white noise. The velocity responses of the equipment were obtained using
accelerometers through charge amplifiers and then passed to the signal analyzer. The velocity response at the centre of the
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Fig. 10. Measured velocity response of the equipment plate per unit voltage to the power amplifier of the four-spring active vibration isolation system

with various feedback gains: without control, solid line; low control gain, dashed line; and high control gain, dotted line.
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Fig. 11. Measured open-loop frequency response of the four-spring active vibration isolation system with (solid line) or without (dashed line) additional

mass on the base.
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equipment plate was fed back into four actuators through a power amplifier to generate the control forces, which were
identical for each actuator. Each feedback channel had thus an equal, constant feedback gain.

Fig. 10 shows the measured velocity response of the equipment plate per unit voltage to the power amplifier, which
drove the primary vibrator, without control and with various control gains. The equipment and base resonance peaks are
attenuated with an increased control gain as predicted. However, the resonance peaks at high frequencies including the
first resonance peak in the springs are not reduced, because the mass of the equipment structure dominates the response
in this frequency range as discussed in the theoretical study. Closer examination of the first resonance in the helical springs
at 404 Hz shows that there is a small amplification caused by the phase shift at this frequency. There is similar
amplification in the amplitude occurs around 327 Hz also due to the corresponding phase shift. The gain margin for the
higher feedback gain used was 1.8 dB, determined by the very low frequency instability.
4.4. Stabilisation of the AVF control system

Because the base structure is much lighter and more flexible than the equipment structure, the system is much more
likely to be unstable at an isolator resonance frequency. Two approaches were implemented experimentally to stabilise the
AVF control system based on the previous theoretical analysis.
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As shown theoretically, adding more mass to the base structure is a simple way to change the base response. A mass of
1.8 kg was attached to the base plate to investigate its stabilising effect on the system. The measured open-loop frequency
response of the improved system is shown in Fig. 11, in which the original open-loop frequency response is also shown for
comparison. It can be seen that the base resonance is reduced to a lower frequency due to the attachment of the mass.
The amplitude and phase of the first isolator resonance are also affected. The phase at the first isolator resonance is
reduced from �2351 to �1751, thus eliminating the potential instability due to this effect. However, the flexural mode in
the equipment plate at 327 Hz is not affected, because the change of the base dynamics does not affect the flexural modal
behaviour in the equipment plate. The control performance of the system with the additional mass on the base is shown in
Fig. 12. It can be seen that the resonance peaks at low frequencies are attenuated without the compromise of an increase at
the first resonance in the helical springs. The maximum gain, however, is still limited by the phase shift at very low
frequency.

This AVF control system can also been stabilised by introducing a lead compensator into the feedback control loop [21].
Fig. 13 shows the open-loop frequency response of the four-spring active vibration isolation system with a first-order lead
compensator, which is carefully tuned to compensate for the phase lag caused by the first isolator resonance at 404 Hz.
The open-loop frequency response of the original system is also shown for comparison. It should be noted that the phase is
constrained to be o�1801 both at the first isolator resonance frequency of 404 Hz and at the flexural mode in the
equipment plate of 327 Hz. These potential instabilities are thus eliminated by introducing the lead compensator.
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Fig. 12. Measured velocity response of the equipment plate per unit voltage to the power amplifier of the four-spring active vibration isolation system

with additional mass on the base under various feedback gains: without control, solid line; low control gain, dashed line; and high control gain,

dotted line.
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Fig. 13. Measured open-loop frequency response of the four-spring active vibration isolation system with (solid line) or without a lead compensator

(dashed line).
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However, it should also be noted that the magnitude of the open-loop frequency response is reduced due to the lead
compensator. As a consequence, the instability in such a control system does not occur at low frequencies as before.
Instead, the control system became unstable at about 1160 Hz, which can be identified as a flexible mode in the base plate.
The decrease in the magnitude of the open-loop frequency response also means that greater feedback control gain is
required for the stabilised system with the lead compensator to achieve the same control performance as that of the
original system. The control performance of the stabilised system with the lead compensator is shown in Fig. 14. It can be
seen that the resonance peaks at low frequencies are attenuated without increasing both the first resonance in the helical
springs and the flexural mode in the equipment plate of 327 Hz. However, the control performance is limited due to the
instability occurring at the flexural mode in the base plate at approximately 1160 Hz.
5. Conclusions

In this paper, the effects of resonances in a distributed parameter isolator on the control performance and stability of an
AVF control system have been investigated. The AVF control system was first studied on a system with a rigid base, and
then extended to include the resonance behaviour of the base. It was shown that AVF control is only effective in
attenuating the resonance peaks at relatively low frequencies, and it cannot suppress the resonance peaks in the isolator at
higher frequencies where the equipment mass dominates the response. Although the AVF control system for a base excited
system was shown to be unconditionally stable it has a potential to become unstable if the base dynamics are considered.
A stability condition in terms of the overall system mode shapes evaluated at the equipment and base has been proposed.
The theoretical findings have been validated by experiments on a four-spring active vibration isolation system which was
configured to act as a one-dimensional system. Two approaches, adding more mass to the base and introducing a lead
compensator into the control loop, have been shown to be effective in stabilizing the AVF control system.
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